Stability of Small Amplitude Boundary Layers for Mixed Hyperbolic-parabolic Systems
نویسنده
چکیده
We consider an initial boundary value problem for a symmetrizable mixed hyperbolic-parabolic system of conservation laws with a small viscosity ε, ut +F (u )x = ε(B(u)ux)x. When the boundary is noncharacteristic for both the viscous and the inviscid system, and the boundary condition dissipative, we show that uε converges to a solution of the inviscid system before the formation of shocks if the amplitude of the boundary layer is sufficiently small. This generalizes previous results obtained for B invertible and the linear study of Serre and Zumbrun obtained for a pure Dirichlet’s boundary condition.
منابع مشابه
Long-time Stability of Noncharacteristic Viscous Boundary Layers
We report our results on long-time stability of multi–dimensional noncharacteristic boundary layers of a class of hyperbolic–parabolic systems including the compressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the assumption of strong spectral, or uniform Evans, stability. Evans stability has been verified for small-amplitude layers by Guès, Métivier, Williams, ...
متن کاملLong-time Stability of Large-amplitude Noncharacteristic Boundary Layers for Hyperbolic–parabolic Systems
Extending investigations of Yarahmadian and Zumbrun in the strictly parabolic case, we study time-asymptotic stability of arbitrary (possibly large) amplitude noncharacteristic boundary layers of a class of hyperbolic-parabolic systems including the Navier–Stokes equations of compressible gasand magnetohydrodynamics, establishing that linear and nonlinear stability are both equivalent to an Eva...
متن کاملExistence and stability of noncharacteristic boundary-layers for the compressible Navier-Stokes and viscous MHD equations
For a general class of hyperbolic-parabolic systems including the compressible NavierStokes and compressible MHD equations, we prove existence and stability of noncharacteristic viscous boundary layers for a variety of boundary conditions including classical Navier-Stokes boundary conditions. Our first main result, using the abstract framework established by the authors in the companion work [G...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملViscous Boundary Value Problems for Symmetric Systems with Variable Multiplicities
Extending investigations of Métivier&Zumbrun in the hyperbolic case, we treat stability of viscous shock and boundary layers for viscous perturbations of multidimensional hyperbolic systems with characteristics of variable multiplicity, specifically the construction of symmetrizers in the low-frequency regime where variable multiplicity plays a role. At the same time, we extend the boundary-lay...
متن کامل